OFFSET
0,4
COMMENTS
If the recursion of A276532 is used to define b(n) = (b(n-1) * b(n-6) + b(n-2) * b(n-3) * b(n-4) * b(n-5)) / b(n-7), with b(0), ..., b(6) variables, then the denominator of b(n) = Product_{k=0..6} b(k)^a(n-k-7) if n>=8.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..5623
Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, 0, 1, -1).
FORMULA
G.f.: 1 / (1 - x - x^3 - x^5 + x^6).
0 = a(n) - a(n-1) - a(n-3) - a(n-5) + a(n-6) for all n in Z.
a(n) = - a(-6-n) for all n in Z.
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 10*x^7 + 16*x^8 + ...
MATHEMATICA
LinearRecurrence[{1, 0, 1, 0, 1, -1}, {1, 1, 1, 2, 3, 5}, 45] (* Vincenzo Librandi, Nov 27 2016 *)
PROG
(PARI) {a(n) = my(m=n, s=1); if( n<0, m=-6-n; s=-1); s * polcoeff( 1 / (1 - x - x^3 - x^5 + x^6) + x * O(x^m), m)};
(Magma) I:=[1, 1, 1, 2, 3, 5]; [n le 6 select I[n] else Self(n-1)+Self(n-3)+Self(n-5)-Self(n-6): n in [1..45]]; // Vincenzo Librandi, Nov 27 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 26 2016
STATUS
approved