login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278702 Table T(n, k) read by antidiagonals: maximal length of arithmetic progression of primes starting at prime(n) and with common difference 2*k. 0
3, 3, 2, 1, 1, 1, 3, 5, 2, 2, 3, 2, 3, 1, 1, 1, 1, 1, 4, 2, 2, 3, 5, 2, 2, 2, 1, 2, 2, 4, 1, 1, 3 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Table starts

3, 3, 1, 3, 3, 1, 3, 2

2, 1, 5, 2, 1, 5, 2, 1

1, 2, 3, 1, 2, 4, 1, 2

2, 1, 4, 2, 1, 2, 1, 1

1, 2, 2, 1, 2, 1, 1, 2

2, 1, 3, 1, 1, 4, 2, 1

LINKS

Table of n, a(n) for n=2..34.

M. Goetz, Welcome to the AP27 Search.

EXAMPLE

T(5, 3) = 4, because prime(5) = 11 and 11+2*3 = 17, 17+2*3 = 23, 23+2*3 = 29 are all prime, but 29+2*3 = 35 is composite, so 4 terms in the arithmetic progression of primes with common difference 6 starting at 11 are prime.

PROG

(PARI) max_prog_len(initialp, diff) = my(i=1, p=initialp); while(ispseudoprime(p+diff), p=p+diff; i++); i

table(rows, cols) = for(n=2, rows+1, for(k=1, cols, print1(max_prog_len(prime(n), 2*k), ", ")); print(""))

table(6, 8) \\ print 6x8 table

CROSSREFS

Sequence in context: A100013 A065744 A016455 * A060574 A283987 A286443

Adjacent sequences:  A278699 A278700 A278701 * A278703 A278704 A278705

KEYWORD

nonn,tabl,more

AUTHOR

Felix Fröhlich, Nov 26 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 2 10:43 EDT 2020. Contains 334770 sequences. (Running on oeis4.)