login
A278664
Binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 62", based on the 5-celled von Neumann neighborhood.
4
1, 11, 110, 1100, 11000, 110010, 1100110, 11000100, 110000100, 1100100100, 11001110100, 110001010100, 1100001010100, 11001001010100, 110011101010100, 1100010101010100, 11000010101010100, 110010010101010100, 1100111010101010100, 11000101010101010100
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Nov 26 2016: (Start)
a(n) = a(n-1) + 10000*a(n-4) - 10000*a(n-5) for n>7.
G.f.: (1 +10*x +99*x^2 +990*x^3 -100*x^4 -990*x^5 +100*x^6 -10*x^7 +10000*x^10) / ((1 -x)*(1 -10*x)*(1 +10*x)*(1 +100*x^2)).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=62; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]][[i]], Range[1, i]], 10], {i, 1, stages-1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Nov 25 2016
STATUS
approved