|
|
A278591
|
|
Numbers k such that (11*10^k - 107) / 3 is prime.
|
|
0
|
|
|
2, 3, 5, 7, 8, 11, 14, 18, 25, 39, 81, 91, 347, 391, 438, 464, 539, 818, 1051, 1125, 1598, 3384, 11966, 79867, 147313
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For k>1, numbers such that the digit 3 followed by k-2 occurrences of the digit 6 followed by the digits 31 is prime (see Example section).
a(26) > 2*10^5.
|
|
LINKS
|
Table of n, a(n) for n=1..25.
Makoto Kamada, Factorization of near-repdigit-related numbers.
Makoto Kamada, Search for 36w31.
|
|
EXAMPLE
|
3 is in this sequence because (11*10^3 - 107) / 3 = 3631 is prime.
Initial terms and primes associated:
a(1) = 2, 331;
a(2) = 3, 3631;
a(3) = 5, 366631;
a(4) = 7, 36666631;
a(5) = 8, 366666631; etc.
|
|
MATHEMATICA
|
Select[Range[0, 100000], PrimeQ[(11*10^# - 107) / 3] &]
|
|
PROG
|
(PARI) is(n)=ispseudoprime((11*10^n - 107)/3) \\ Charles R Greathouse IV, Jun 13 2017
|
|
CROSSREFS
|
Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
Sequence in context: A186285 A190855 A190810 * A191121 A026401 A069353
Adjacent sequences: A278588 A278589 A278590 * A278592 A278593 A278594
|
|
KEYWORD
|
nonn,more,hard
|
|
AUTHOR
|
Robert Price, Nov 23 2016
|
|
EXTENSIONS
|
First comment and second link corrected by Robert Price, May 23 2018
a(25) from Robert Price, Sep 30 2018
|
|
STATUS
|
approved
|
|
|
|