OFFSET
0,2
COMMENTS
In general, if m>0 and g.f. = Product_{k>=1} (1 - x^(5*k))^m/(1 - x^k)^(m+1) then a(n) ~ sqrt(4*m+5) * exp(Pi*sqrt(2*(4*m+5)*n/15)) / (4*sqrt(3)*5^((m+1)/2)*n). - Vaclav Kotesovec, Nov 28 2016
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
FORMULA
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^30/(1 - x^k)^31, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 23 2016
STATUS
approved