login
A278470
Numbers k such that 10^k - 201 is prime.
2
13, 20, 40, 43, 73, 85, 576, 1676, 33565
OFFSET
1,1
COMMENTS
For k > 2, numbers k such that k-3 occurrences of the digit 9 followed by the digits 799 is prime.
a(9) > 10000. - Robert G. Wilson v, Nov 24 2016
EXAMPLE
13 is in this sequence because 10^13 - 201 = 9999999999799 is prime.
Initial terms and associated primes:
a(1) = 13, 9999999999799;
a(2) = 20, 99999999999999999799;
a(3) = 40, 9999999999999999999999999999999999999799; etc.
MAPLE
A278470:=n->`if`(isprime(10^n-201), n, NULL): seq(A278470(n), n=1..10^3); # Wesley Ivan Hurt, Dec 08 2016
MATHEMATICA
Select[Range[3, 2000], PrimeQ[10^# - 201] &]
PROG
(Magma) [n: n in [3..500] | IsPrime(10^n-201)];
(PARI) is(n)=ispseudoprime(10^n-201) \\ Charles R Greathouse IV, Jun 06 2017
CROSSREFS
Cf. A108327 (10^n-21), this sequence (10^n-201), A278397 (10^n-20001), A278471 (10^n-2001).
Sequence in context: A164469 A164462 A132946 * A066515 A166656 A346401
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Nov 23 2016
EXTENSIONS
a(9) from Kamada data by Tyler Busby, May 03 2024
STATUS
approved