login
A278465
Numbers that are the sum of one or two terms of A035928.
2
2, 4, 10, 12, 14, 20, 22, 24, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 62, 64, 66, 68, 76, 80, 84, 90, 94, 98, 104, 108, 112, 142, 144, 150, 152, 154, 160, 162, 170, 172, 178, 180, 182, 184, 188, 190, 192, 194, 198, 202, 204, 206, 208, 212, 214, 216, 220, 222, 224, 226, 230, 232, 234, 240, 242, 244, 246, 250, 252, 254, 256, 260
OFFSET
1,1
LINKS
MAPLE
N:= 1000: # to get all terms <= N
bcr:= proc(n) local L, m;
L:= convert(n, base, 2);
m:= nops(L);
add((1-L[i])*2^(m-i), i=1..m)
end proc:
A035928:= select(`<=`, {seq(seq(x*2^d + bcr(x), x=2^(d-1)..2^d-1), d=1..(ilog2(N)+1)/2)}, N):
sort(convert(A035928 union {seq(seq(A035928[i]+t, t = select(`<=`, A035928[i..-1], N-A035928[i])), i=1..nops(A035928))}, list)); # Robert Israel, Nov 23 2016
MATHEMATICA
max = 1000;
bcrQ[n_] := Module[{idn2 = IntegerDigits[n, 2]}, Reverse[idn2 /. {1 -> 0, 0 -> 1}] == idn2];
A035928 = Select[Range[max], bcrQ];
Union[Total /@ Tuples[A035928, 2], A035928] // Select[#, # <= max&]& (* Jean-François Alcover, Jul 29 2020, after Harvey P. Dale in A035928 *)
CROSSREFS
Cf. A035928.
Sequence in context: A290473 A356664 A138940 * A129412 A266115 A113536
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Nov 22 2016
STATUS
approved