login
A278407
G.f.: x^2 * f''(x), where f(x) = Product_{k>=1} (1 + x^k).
2
0, 0, 2, 12, 24, 60, 120, 210, 336, 576, 900, 1320, 1980, 2808, 4004, 5670, 7680, 10336, 14076, 18468, 24320, 31920, 41118, 52624, 67344, 85200, 107250, 134784, 167832, 207872, 257520, 316200, 386880, 473088, 574464, 696150, 841680, 1012320, 1214784, 1455324
OFFSET
0,3
LINKS
FORMULA
a(n) = n*(n-1)*A000009(n).
MAPLE
g:= mul(1+x^k, k=1..100):
S1:= series(g, x, 101):
S2:= series(x^2*diff(S1, x$2), x, 101):
seq(coeff(S2, x, j), j=0..100); # Robert Israel, Nov 22 2016
MATHEMATICA
nmax=60; CoefficientList[Series[x^2*D[Product[1+x^k, {k, 1, nmax}], {x, 2}], {x, 0, nmax}], x]
nmax=60; CoefficientList[Series[Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x]*Range[0, nmax]*(Range[0, nmax]-1)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 21 2016
STATUS
approved