login
A278385
T(n,k)=Number of nXk 0..1 arrays with rows and columns in lexicographic nondecreasing order but with exactly three mistakes.
8
0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 40, 74, 40, 0, 1, 267, 1220, 1220, 267, 1, 8, 1350, 12910, 23640, 12910, 1350, 8, 36, 5936, 100807, 368421, 368421, 100807, 5936, 36, 120, 23565, 652343, 4703562, 8632118, 4703562, 652343, 23565, 120, 330, 84912, 3750182
OFFSET
1,8
COMMENTS
Table starts
...0......0........0...........0..............0................1
...0......0........3..........40............267.............1350
...0......3.......74........1220..........12910...........100807
...0.....40.....1220.......23640.........368421..........4703562
...0....267....12910......368421........8632118........179716850
...1...1350...100807.....4703562......179716850.......6204309386
...8...5936...652343....50473056.....3325788157.....198563803019
..36..23565..3750182...474255829....54735436424....5851197688577
.120..84912.19784428..4047341159...813247916326..157794170262819
.330.278422.96786947.32112086692.11132424779200.3912513274701995
LINKS
FORMULA
Empirical for column k:
k=1: [polynomial of degree 7]
k=2: [polynomial of degree 15]
k=3: [polynomial of degree 31]
k=4: [polynomial of degree 63]
k=5: [polynomial of degree 127]
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..0. .0..1..1..0. .1..0..1..0. .0..0..0..1. .0..0..0..0
..0..1..0..0. .0..1..1..1. .1..0..0..0. .1..1..1..1. .0..1..0..0
..1..0..0..1. .1..1..0..0. .1..0..1..0. .1..1..0..1. .1..1..1..0
..1..0..1..1. .0..0..1..0. .1..1..1..0. .0..1..1..1. .1..1..0..1
CROSSREFS
Column 1 is A000580(n+1).
Sequence in context: A305541 A280810 A283386 * A245626 A307233 A233320
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 20 2016
STATUS
approved