login
A278338
Irregular triangle read by rows in which row n contains the first Carmichael number equal to m mod n where m is coprime to n, 0 <= m < n, ordered by m.
1
561, 561, 1105, 2465, 561, 8911, 561, 46657, 52633, 1729, 1105, 2465, 561, 46657, 294409, 29341, 512461, 1105, 561, 1024651, 2821, 8911, 1729, 1909001, 2821, 162401, 1105, 2465, 561, 52633, 46657, 1729, 2465, 1729, 10585, 29341, 1105, 46657, 1193221
OFFSET
1,1
COMMENTS
The n-th row contains phi(n) terms. Wright proves that this sequence exists for each coprime m and n.
LINKS
Thomas Wright, Infinitely many Carmichael numbers in arithmetic progressions, Bulletin of the London Mathematical Society 45:5 (2013), pp. 943-952.
FORMULA
a(n) is the least Carmichael number equal to A038566(n) mod A038567(n).
EXAMPLE
561 = 0 mod 1;
561 = 1 mod 2;
1105 = 1 mod 3, 2465 = 2 mod 3;
561 = 1 mod 4, 8911 = 3 mod 4;
561 = 1 mod 5, 46657 = 2 mod 5, 52633 = 3 mod 5, 1729 = 4 mod 5;
1105 = 1 mod 6, 2465 = 5 mod 6;
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved