login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278314 a(n) = -c(n-1) * c(n-2) * c(n+3) where c(n) = A006769(n). 3
0, 0, 1, -3, -5, -14, -8, 69, -435, 2065, 3612, 28888, -43355, -2616119, 28076979, -332513754, 331948240, 8280062505, 641260644409, 18784454671297, -318128427505160, 10663732503571536, -66316334575107447, -8938035295591025771, -588310630753491921045 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

a(n) = A028942(n) up to sign.

y coordinate of n*P = -A028942(n) / A028943(n) = a(n) / A006769(n)^3 where P is generator for rational points on curve y^2 + y = x^3 - x.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..173

FORMULA

0 = a(n)*a(n+8) - a(n+1)*a(n+7) - 3*a(n+2)*a(n+6) + 3*a(n+3)*a(n+5) - 6*a(n+4)^2 for all n in Z.

0 = a(n+1)*a(n+2)*a(n+6) - 2*a(n+1)*a(n+3)*a(n+5) + 3*a(n+1)*a(n+4)^2 + 3*a(n+2)^2*a(n+5) + a(n+2)*a(n+3)*a(n+4) - a(n+3)^3 for all n in Z.

EXAMPLE

G.f. = x^3 - 3*x^4 - 5*x^5 - 14*x^6 - 8*x^7 + 69*x^8 - 435*x^9 + ...

PROG

(PARI) {a(n) = my(m, an); if( n>0, m = n; an = vector( max(12, m), i, if( i<13, [0, 0, 1, -3, -5, -14, -8, 69, -435, 2065, 3612, 28888][i], 0)), m = 1-n; an = vector( max(12, m), i, if( i<13, [1, 1, 1, 0, -2, 3, -15, -35, -56, -92, 2001, -8555][i], 0))); for( k=13, m, an[k] = (an[k-1] * an[k-7] + 3 *  an[k-2] * an[k-6] - 3 * an[k-3] * an[k-5] + 6 * an[k-4]^2) / an[k-8]); an[m]};

CROSSREFS

Cf. A006769, A028942, A028943.

Sequence in context: A177007 A227170 A028942 * A289622 A179213 A074378

Adjacent sequences:  A278311 A278312 A278313 * A278315 A278316 A278317

KEYWORD

sign

AUTHOR

Michael Somos, Nov 17 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 12:45 EDT 2019. Contains 327131 sequences. (Running on oeis4.)