#########################################################
#                                                       #
#    Coded by Indranil Ghosh (indranilg49@gmail.com)    #     
#                                                       #
#########################################################

#Python 2.7.11, OEIS sequence: A278234

from operator import mul
from sympy import prime, factorial as f, factorint

def P(n):
    f = factorint(n)
    return sorted([f[i] for i in f])

def a046523(n):
    x=1
    while True:
        if P(n) == P(x): return x
        else: x+=1

def a007623(n, p=2): return n if n<p else a007623(int(n/p), p+1)*10 + n%p

def a275732(n):
    x=str(a007623(n))[::-1]
    return 1 if n==0 or x.count("1")==0 else reduce(mul, [prime(i + 1) for i in xrange(len(x)) if x[i]=='1'])

def a257684(n):
    x=str(a007623(n))[:-1]
    y="".join([str(int(i) - 1) if int(i)>0 else '0' for i in x])[::-1]
    return 0 if n==1 else sum([int(y[i])*f(i + 1) for i in xrange(len(y))])

def a275734(n): return 1 if n==0 else a275732(n)*a275734(a257684(n))

def a(n): return a046523(a275734(n))

print [a(n) for n in xrange(201)]