login
A278188
T(n,k)=Number of nXk 0..3 arrays with every element plus 1 mod 4 equal to some element at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) or (1,0), with upper left element zero.
11
0, 0, 0, 0, 3, 0, 0, 19, 28, 0, 0, 136, 544, 200, 0, 0, 935, 13012, 13720, 1532, 0, 0, 6381, 295190, 1075258, 347116, 11794, 0, 0, 43478, 6715738, 81691958, 91270219, 8803344, 90538, 0, 0, 296105, 152540636, 6196345742, 23124026160, 7737459027, 223230876
OFFSET
1,5
COMMENTS
Table starts
.0.......0............0................0..................0...................0
.0.......3...........19..............136................935................6381
.0......28..........544............13012.............295190.............6715738
.0.....200........13720..........1075258...........81691958..........6196345742
.0....1532.......347116.........91270219........23124026160.......5858713218010
.0...11794......8803344.......7737459027......6545874548694....5537142857552112
.0...90538....223230876.....656008970388...1852662745588838.5232919178331757631
.0..695252...5660949042...55620335387114.524386828923495662
.0.5339294.143557203008.4715820197535009
LINKS
FORMULA
Empirical for column k:
k=2: a(n) = 8*a(n-1) -4*a(n-2) +15*a(n-3) -26*a(n-4) +14*a(n-5) -16*a(n-6)
k=3: [order 27]
Empirical for row n:
n=2: a(n) = 9*a(n-1) -16*a(n-2) +9*a(n-3) -12*a(n-4) +5*a(n-5) +7*a(n-6) -4*a(n-7)
n=3: [order 43]
EXAMPLE
Some solutions for n=3 k=4
..0..3..3..0. .0..1..3..2. .0..1..0..3. .0..1..0..3. .0..3..1..0
..1..3..2..1. .1..2..0..3. .3..2..0..3. .3..2..2..1. .1..2..2..0
..2..2..0..1. .3..0..1..3. .1..2..2..3. .1..1..1..1. .1..2..3..3
CROSSREFS
Sequence in context: A291802 A221828 A368348 * A101192 A228622 A037288
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 14 2016
STATUS
approved