login
A278138
Primes p such that p+2, 3*p+2 and 3*p+8 are also primes.
1
3, 5, 17, 197, 1427, 1667, 2087, 4157, 4217, 8387, 8597, 10037, 11117, 11717, 15287, 17417, 20147, 25847, 29207, 33347, 33827, 34847, 35897, 36527, 47657, 56237, 57527, 60257, 63197, 63587, 69497, 75167, 77477, 89657, 93887, 96797, 99347, 99527, 100547
OFFSET
1,1
COMMENTS
If k = (a(n)+2)*(3*a(n)+2), then A000203(k) = A000203(k-A000005(k)), see Robert Israel's comment at A277273.
LINKS
Iain Fox, Table of n, a(n) for n = 1..10000 (first 4356 terms from Robert Israel)
MAPLE
select(p -> isprime(3*p+8) and isprime(3*p+2) and isprime(p+2) and isprime(p), [3, seq(i, i=5..10^6, 6)]); # Robert Israel, Nov 23 2016
MATHEMATICA
Select[Prime[Range[10000]], Union[PrimeQ/@{# + 2, 3 # + 2, 3 # + 8}] == {True}&]
PROG
(MATLAB)
P = primes(10^6);
P1 = intersect(P, P-2);
P1 = intersect(P1, (P-2)/3);
P1 = intersect(P1, (P-8)/3) % Robert Israel, Nov 23 2016
(Magma) [p: p in PrimesUpTo(100000) | IsPrime(p+2) and IsPrime(3*p+2) and IsPrime(3*p+8)]; // Vincenzo Librandi, Nov 23 2016
(PARI) isok(p) = isprime(p) && isprime(p+2) && isprime(3*p+2) && isprime(3*p+8); \\ Michel Marcus, Dec 17 2017
CROSSREFS
Subsequence of A001359.
Sequence in context: A171271 A056826 A370879 * A273870 A272060 A333873
KEYWORD
nonn,easy
AUTHOR
Ivan N. Ianakiev, Nov 23 2016
STATUS
approved