OFFSET
0,3
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 0..201
S. R. Carrell, The Non-Orientable Map Asymptotics Constant pg, arXiv:1406.1760 [math.CO], 2014.
Stavros Garoufalidis, Marcos Marino, Universality and asymptotics of graph counting problems in nonorientable surfaces, arXiv:0812.1195 [math.CO], 2008.
FORMULA
EXAMPLE
For n=2 we have p(3/2) = 4 * (5/144) * (3/2)^(3/2) / gamma(9/4) = 2/(sqrt(6)*gamma(1/4)).
For n=4 we have p(5/2) = 4 * (1033/27648) * (3/2)^(5/2) / gamma(19/4) = 1033/(13860*sqrt(6)*gamma(3/4)).
n z(n) p((n+1)/2)
0 -1 3/(sqrt(6)*gamma(3/4))
1 1/12 1/2
2 5/144 2/(sqrt(6)*gamma(1/4))
3 25/864 5/(36*sqrt(Pi))
4 1033/27684 1033/(13860*sqrt(6)*gamma(3/4))
5 15745/248832 3149/442368
6 1599895/11943936 319979/(18796050*sqrt(6)*gamma(1/4))
7 12116675/35831808 484667/(560431872*sqrt(Pi))
8 1519810267/1528823808 1519810267/(4258429005600*sqrt(6)*gamma(3/4))
9 5730215335/1719926784 1146043067/41094783959040
...
PROG
(PARI)
A269418_seq(N) = {
my(y = vector(N)); y[1] = 1/48;
for (n = 2, N,
y[n] = (25*(n-1)^2-1)/48 * y[n-1] + 1/2*sum(k = 1, n-1, y[k]*y[n-k]));
concat(-1, y);
};
seq(N) = {
my(y = A269418_seq(N), z = vector(N)); z[1] = 1/12;
for (n = 2, N,
my(t1 = if(n%2, 0, y[1+n\2]/3^(n\2)),
t2 = sum(k=1, n-1, z[k]*z[n-k]));
z[n] = (t1 + (5*n-6)/6 * z[n-1] + t2)/2);
concat(-1, z);
};
apply(numerator, seq(18))
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Gheorghe Coserea, Nov 12 2016
STATUS
approved