

A278041


The tribonacci representation of a(n) is obtained by appending 0,1,1 to the tribonacci representation of n (cf. A278038).


27



3, 10, 16, 23, 27, 34, 40, 47, 54, 60, 67, 71, 78, 84, 91, 97, 104, 108, 115, 121, 128, 135, 141, 148, 152, 159, 165, 172, 176, 183, 189, 196, 203, 209, 216, 220, 227, 233, 240, 246, 253, 257, 264, 270, 277, 284, 290, 297, 301, 308, 314, 321, 328, 334, 341, 345, 352, 358, 365, 371, 378, 382, 389, 395, 402, 409, 415
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This sequence gives the indices k for which A080843(k) = 2, sorted increasingly with offset 0. In the W. Lang link a(n) = C(n).  Wolfdieter Lang, Dec 06 2018
Positions of letter c in the tribonacci word t generated by a>ab, b>ac, c>a, when given offset 0.  Michel Dekking, Apr 03 2019
This sequence gives the positions of the word ac in the tribonacci word t. This follows from the fact that the letter c is always preceded in t by the letter a, and the formula AB = C1, where A := A003144, B := A003145, C := A003146.  Michel Dekking, Apr 09 2019


LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..20000
L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Fibonacci representations of higher order, Fib. Quart., 10 (1972), 4369, Theorem 13.
Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.


FORMULA

a(n) = A003146(n+1)  1.
a(n) = A003144(A003145(n)).  N. J. A. Sloane, Oct 05 2018
From Wolfdieter Lang, Dec 06 2018: (Start)
a(n) = n + 2 + A(n) + B(n), where A(n) = A278040(n) and B = A278039(n).
a(n) = 7*n + 3  (z_A(n1) + 3*z_C(n1)), where z_A(n) = A276797(n+1) and z_C(n) = A276798(n+1)  1, n >= 0.
For proofs see the W. Lang link in A080843, eqs. 37 and 40.
a(n)  1 = B2(n), where B2numbers are Bnumbers from A278039 followed by a Cnumber from A278041. See a comment and example in A319968.
(End)


EXAMPLE

The tribonacci representation of 7 is 1000 (see A278038), so a(7) has tribonacci representation 1000011, which is 44+2+1 = 47, so a(7) = 47.


CROSSREFS

Cf. A003145, A003146, A080843, A276797, A276798, A278038, A278039, A278040, A278041, A319968.
By analogy with the Wythoff compound sequences A003622 etc., the nine compounds of A003144, A003145, A003146 might be called the tribonacci compound sequences. They are A278040, A278041, and A319966A319972.
Sequence in context: A242203 A093516 A246302 * A063209 A063109 A083684
Adjacent sequences: A278038 A278039 A278040 * A278042 A278043 A278044


KEYWORD

nonn,base,easy


AUTHOR

N. J. A. Sloane, Nov 18 2016


STATUS

approved



