login
A278014
T(n,k)=Number of nXk 0..2 arrays with every element plus 1 mod 3 equal to some element at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) or (1,0), with upper left element zero.
13
0, 0, 0, 0, 6, 0, 0, 28, 30, 0, 0, 168, 410, 198, 0, 0, 960, 6372, 7204, 1230, 0, 0, 5530, 98410, 315060, 121826, 7734, 0, 0, 31808, 1516632, 13597418, 14786448, 2072344, 48510, 0, 0, 183000, 23376048, 586416930, 1772657688, 699721024, 35217368
OFFSET
1,5
COMMENTS
Table starts
.0.......0...........0..............0..................0......................0
.0.......6..........28............168................960...................5530
.0......30.........410...........6372..............98410................1516632
.0.....198........7204.........315060...........13597418..............586416930
.0....1230......121826.......14786448.........1772657688...........212235186204
.0....7734.....2072344......699721024.......233160226732.........77589535205794
.0...48510....35217368....33064544648.....30622716754158......28318244060569024
.0..304422...598579468..1562794615162...4022851892753872...10338163442842553944
.0.1910190.10173619772.73862525475272.528455116917488310.3774002232626515614634
LINKS
FORMULA
Empirical for column k:
k=2: a(n) = 5*a(n-1) +8*a(n-2)
k=3: [order 9]
k=4: [order 28]
Empirical for row n:
n=2: a(n) = 6*a(n-1) -8*a(n-3) -a(n-4)
n=3: [order 19]
n=4: [order 63]
EXAMPLE
Some solutions for n=3 k=4
..0..2..1..0. .0..1..0..0. .0..1..2..0. .0..1..0..0. .0..1..0..1
..1..0..0..2. .1..2..1..1. .1..1..2..1. .0..2..2..1. .0..2..1..2
..2..2..0..1. .1..1..0..2. .2..0..1..0. .1..2..2..0. .1..1..1..1
CROSSREFS
Sequence in context: A230968 A028700 A362791 * A368846 A230337 A019157
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 08 2016
STATUS
approved