The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277974 Expansion of ((Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^5) - 1)/5 in powers of x. 7
 0, 1, 4, 13, 38, 101, 252, 594, 1340, 2907, 6104, 12447, 24744, 48068, 91476, 170838, 313646, 566824, 1009628, 1774290, 3079338, 5282172, 8962288, 15050848, 25032420, 41255101, 67406472, 109236685, 175654072, 280371510, 444372452, 699579062, 1094289564 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 FORMULA a(n) = A277212(n)/5, n > 0. G.f.: ((Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^5) - 1)/5. a(n) ~ exp(4*Pi*sqrt(n/5)) / (sqrt(2) * 5^(11/4) * n^(7/4)). - Vaclav Kotesovec, Nov 10 2016 EXAMPLE G.f. = x + 4*x^2 + 13*x^3 + 38*x^4 + 101*x^5 + 252*x^6 + ... MATHEMATICA nmax = 50; CoefficientList[Series[(Product[(1 - x^(5*j))/(1 - x^j)^5, {j, 1, nmax}] - 1)/5, {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *) a[ n_] := SeriesCoefficient[ (QPochhammer[ x^5] / QPochhammer[ x]^5 - 1) / 5, {x, 0, n}]; (* Michael Somos, Nov 13 2016 *) PROG (PARI) x='x+O('x^66); concat([0], Vec(eta(x^5)/eta(x)^5-1)/5) \\ Joerg Arndt, Nov 27 2016 CROSSREFS Cf. Expansion of ((Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k) - 1)/k in powers of x: A014968 (k=2), A277968 (k=3), this sequence (k=5), A160549 (k=7), A277912 (k=11). Sequence in context: A024450 A047094 A145128 * A089092 A181527 A049611 Adjacent sequences:  A277971 A277972 A277973 * A277975 A277976 A277977 KEYWORD nonn AUTHOR Seiichi Manyama, Nov 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 11:42 EDT 2020. Contains 336198 sequences. (Running on oeis4.)