This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277974 Expansion of ((Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^5) - 1)/5 in powers of x. 7
 0, 1, 4, 13, 38, 101, 252, 594, 1340, 2907, 6104, 12447, 24744, 48068, 91476, 170838, 313646, 566824, 1009628, 1774290, 3079338, 5282172, 8962288, 15050848, 25032420, 41255101, 67406472, 109236685, 175654072, 280371510, 444372452, 699579062, 1094289564 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 FORMULA a(n) = A277212(n)/5, n > 0. G.f.: ((Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^5) - 1)/5. a(n) ~ exp(4*Pi*sqrt(n/5)) / (sqrt(2) * 5^(11/4) * n^(7/4)). - Vaclav Kotesovec, Nov 10 2016 EXAMPLE G.f. = x + 4*x^2 + 13*x^3 + 38*x^4 + 101*x^5 + 252*x^6 + ... MATHEMATICA nmax = 50; CoefficientList[Series[(Product[(1 - x^(5*j))/(1 - x^j)^5, {j, 1, nmax}] - 1)/5, {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *) a[ n_] := SeriesCoefficient[ (QPochhammer[ x^5] / QPochhammer[ x]^5 - 1) / 5, {x, 0, n}]; (* Michael Somos, Nov 13 2016 *) PROG (PARI) x='x+O('x^66); concat([0], Vec(eta(x^5)/eta(x)^5-1)/5) \\ Joerg Arndt, Nov 27 2016 CROSSREFS Cf. Expansion of ((Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k) - 1)/k in powers of x: A014968 (k=2), A277968 (k=3), this sequence (k=5), A160549 (k=7), A277912 (k=11). Sequence in context: A024450 A047094 A145128 * A089092 A181527 A049611 Adjacent sequences:  A277971 A277972 A277973 * A277975 A277976 A277977 KEYWORD nonn AUTHOR Seiichi Manyama, Nov 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 03:08 EST 2017. Contains 296020 sequences.