login
A277760
The number of highly composite numbers between 2^n and 2^(n+1).
2
1, 2, 1, 1, 3, 1, 2, 1, 2, 2, 1, 2, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 4, 3, 2, 2, 3, 4, 3, 3, 2, 4, 3, 2, 3, 4, 4, 3, 2, 2, 4, 4, 3, 2, 2, 4, 3, 4, 2, 3, 4, 3, 4, 3, 3, 3, 3, 3, 2, 3, 2, 4, 3, 3, 4, 4, 4, 3, 3, 2, 4, 3, 4, 3, 3, 2, 4, 4, 4, 4, 5, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 5, 4, 4, 3, 3, 4, 4, 4, 4, 5, 3, 4, 4, 4, 4, 5, 2, 4, 4, 5, 3, 5, 3, 4, 6, 4, 3, 4, 4, 5, 5, 4, 3, 3, 4, 5, 4
OFFSET
1,2
COMMENTS
The interval is taken to be the half-open interval [2^n,2^(n+1)).
LINKS
P. Erdős, On Highly composite numbers, J. London Math. Soc. 19 (1944), 130--133 MR7,145d; Zentralblatt 61,79.
S. Ramanujan, Highly composite numbers, Proceedings of the London Mathematical Society, 2, XIV, 1915, 347 - 409.
EXAMPLE
a(5) = 3 since the set of highly composite numbers (A002182) between 32 and 64 is {36,48,60}.
MATHEMATICA
nn = 20; Table[Count[#, k_ /; 2^n <= k < 2^(n + 1)], {n, nn}] &[Block[{a = 0}, Reap[Do[b = DivisorSigma[0, k]; If[b > a, a = b; Sow[k]], {k, 2^(nn + 1)}]][[-1, 1]]]] (* Michael De Vlieger, Oct 31 2016 *)
CROSSREFS
Sequence in context: A342255 A112377 A354521 * A371572 A127704 A307662
KEYWORD
nonn
AUTHOR
Greg Huber, Oct 29 2016
EXTENSIONS
Terms a(27) and beyond from Joerg Arndt, Nov 01 2016
STATUS
approved