login
A277698
a(n) = least unitary prime divisor of n or 1 if no such prime-divisor exists.
5
1, 2, 3, 1, 5, 2, 7, 1, 1, 2, 11, 3, 13, 2, 3, 1, 17, 2, 19, 5, 3, 2, 23, 3, 1, 2, 1, 7, 29, 2, 31, 1, 3, 2, 5, 1, 37, 2, 3, 5, 41, 2, 43, 11, 5, 2, 47, 3, 1, 2, 3, 13, 53, 2, 5, 7, 3, 2, 59, 3, 61, 2, 7, 1, 5, 2, 67, 17, 3, 2, 71, 1, 73, 2, 3, 19, 7, 2, 79, 5, 1, 2, 83, 3, 5, 2, 3, 11, 89, 2, 7, 23, 3, 2, 5, 3, 97, 2, 11, 1, 101, 2, 103, 13, 3
OFFSET
1,2
LINKS
FORMULA
a(n) = A008578(1+A277697(n)).
a(n) = A020639(A055231(n)). - Amiram Eldar, Jul 28 2024
MATHEMATICA
Table[If[Length@ # == 0, 1, First@ #] &@ Select[FactorInteger[n][[All, 1]], GCD[#, n/#] == 1 &], {n, 105}] (* Michael De Vlieger, Oct 30 2016 *)
PROG
(Scheme) (define (A277698 n) (A008578 (+ 1 (A277697 n))))
(Python)
from sympy import factorint, prime, primepi, isprime, primefactors
def a049084(n): return primepi(n)*(1*isprime(n))
def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
def a028234(n):
f = factorint(n)
return 1 if n==1 else n/(min(f)**f[min(f)])
def a067029(n):
f=factorint(n)
return 0 if n==1 else f[min(f)]
def a277697(n): return 0 if n==1 else a055396(n) if a067029(n)==1 else a277697(a028234(n))
def a008578(n): return 1 if n==1 else prime(n - 1)
def a(n): return a008578(1 + a277697(n)) # Indranil Ghosh, May 16 2017
(PARI) a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] == 1, return(f[i, 1]))); 1; } \\ Amiram Eldar, Jul 28 2024
CROSSREFS
Cf. A001694 (positions of ones).
Cf. A080368 for a variant which gives 0's instead of 1's for numbers with no unitary prime divisors and also A277708 (the least prime factor with an odd exponent).
Differs from A134194 for the first time at n=18, where a(18) = 2, while A134194(18) = 3.
Sequence in context: A126773 A353274 A326691 * A134194 A308707 A158584
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 28 2016
STATUS
approved