login
A277668
Number of n-length words over a 5-ary alphabet {a_1,a_2,...,a_5} avoiding consecutive letters a_i, a_{i+1}.
3
1, 5, 21, 88, 369, 1547, 6486, 27194, 114017, 478042, 2004299, 8403476, 35233470, 147724276, 619367372, 2596837513, 10887827441, 45649674187, 191396563242, 802473294131, 3364550422879, 14106637106664, 59145260271900, 247979854176461, 1039711513563070
OFFSET
0,2
FORMULA
G.f.: 1/(1 + Sum_{j=1..5} (6-j)*(-x)^j).
MAPLE
a:= n-> (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>,
<0|0|0|0|1>, <1|-2|3|-4|5>>^n)[5, 5]:
seq(a(n), n=0..30);
MATHEMATICA
LinearRecurrence[{5, -4, 3, -2, 1}, {1, 5, 21, 88, 369}, 30] (* Harvey P. Dale, Oct 08 2017 *)
CROSSREFS
Column k=5 of A277666.
Cf. A284840.
Sequence in context: A010925 A019992 A010917 * A270494 A347041 A267268
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Oct 26 2016
STATUS
approved