login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277648 Triangle T(n,k) = A277647(n, A005117(k)), read by rows. 8

%I

%S 1,2,1,1,3,2,1,1,1,1,4,2,2,1,1,1,1,1,1,1,1,5,3,2,2,2,1,1,1,1,1,1,1,1,

%T 1,1,1,6,4,3,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,7,4,4,3,2,2,2,2,

%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,8,5,4,3,3,3,2,2,2,2,2,1

%N Triangle T(n,k) = A277647(n, A005117(k)), read by rows.

%C The columns of this triangle are the columns of A277647 with squarefree index.

%C Other that the first (with length 1), row n has length A278100(n).

%H Jason Kimberley, <a href="/A277648/b277648.txt">Table of n, a(n) for n = 1..10716 (the first 37 rows of the triangle)</a>

%F T(n,k) = A000196(A277646(n,A005117(k))).

%F T(n,k) sqrt(A005117(k)) <= n < (T(n,k)+1) sqrt(A005117(k)).

%e Triangle begins:

%e 1;

%e 2, 1, 1;

%e 3, 2, 1, 1, 1, 1;

%e 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;

%e ...

%e where the first 11 terms of A005117(k) are

%e 1, 2, 3, 5, 6, 7,10,11,13,14,15.

%t DeleteCases[#, 0] & /@ Table[Boole[SquareFreeQ@ k] Floor[n/Sqrt@ k], {n, 8}, {k, n^2}] (* _Michael De Vlieger_, Nov 24 2016 *)

%o (Magma)

%o A277647:=func<n,k|Isqrt(n^2 div k)>;

%o A277648_row:=func<n|[A277647(n,k):k in[1..n^2]|IsSquarefree(k)]>;

%o &cat[A277648_row(n):n in[1..8]];

%o (PARI)

%o row(n)={apply(k->sqrtint(n^2\k), select(issquarefree,[1..n^2]))}

%o for(n=1, 6, print(row(n))) \\ _Andrew Howroyd_, Feb 28 2018

%Y Cf. A277646, A277647.

%K nonn,tabf,easy

%O 1,2

%A _Jason Kimberley_, Nov 10 2016

%E Missing a(3009) in b-file inserted by _Andrew Howroyd_, Feb 28 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 00:49 EDT 2019. Contains 325189 sequences. (Running on oeis4.)