OFFSET
1,1
COMMENTS
From David A. Corneth, Oct 26 2016 and Oct 27 2016: (Start)
Numbers of the form k * p where p > (k + 1)^2 and p prime and k > 1.
If n has a dominant prime factor, it's A006530(n).
All primes p > 4 have the property that floor(sqrt(A006530(p))) = floor(sqrt(p)) > (p/A006530(p)) = 1.
A063763 is a supersequence.
(End)
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000
FORMULA
EXAMPLE
133230 is in this sequence because 133230 = 2*3*5*4441 and 2*3*5 = 30 < 66 = floor(sqrt(4441)).
MAPLE
is_a := proc(n) max(numtheory:-factorset(n)):
not isprime(n) and floor(sqrt(%)) > (n/%) end:
select(is_a, [$1..244]);
MATHEMATICA
Select[Select[Range@ 244, CompositeQ], Function[n, Total@ Boole@ Map[Function[p, Floor@ Sqrt@ p > n/p], FactorInteger[n][[All, 1]]] > 0]] (* Michael De Vlieger, Oct 27 2016 *)
PROG
(Python)
from sympy import primefactors
from gmpy2 import is_prime, isqrt
A277624_list = []
for n in range(2, 10**3):
if not is_prime(n):
for p in primefactors(n):
if isqrt(p)*p > n:
A277624_list.append(n)
break # Chai Wah Wu, Oct 25 2016
(PARI) upto(n) = my(l=List()); for(k=2, sqrtnint(n, 3), forprime(p=(k+1)^2, n\k, listput(l, k*p))); listsort(l); l
is(n) = if(!isprime(n)&&n>1, f=factor(n)[, 1]; sqrtint(f[#f]) > n/f[#f], 0) \\ David A. Corneth, Oct 26 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Oct 24 2016
STATUS
approved