

A277534


Least hypotenuse, c, of a Primitive Pythagorean Triangle (PPT) such that the difference between it, c, and its greater leg, b, is n; or 0 if no such PPT exists.


1



5, 17, 0, 0, 65, 0, 0, 29, 65, 185, 0, 0, 169, 0, 0, 0, 221, 333, 0, 0, 273, 0, 0, 0, 157, 481, 0, 0, 1189, 0, 0, 641, 1353, 629, 0, 0, 1517, 0, 0, 425, 1681, 777, 0, 0, 1845, 0, 0, 0, 205, 925, 0, 0, 2173, 0, 0, 0, 2337, 1073, 0, 0, 2501, 0, 0, 0, 2665, 1221, 0, 0, 2829, 0, 0, 1405, 2993, 1369, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

n = 1, 2, 5, 8, 9, 10, 13, 17, 18, 21, 25, ..., satisfies the first criterion;
a(n) = 0 for n = 3, 4, 6, 7, 11, 12, 14, 15, 16, 19, 20, 22, 23, 24, ..., ;
a(n) = 0 for 5832 of the first 10000 terms;
a(8n) = 0 for 832 of the first 10000 terms;
a(8n) = 0 for n: 2, 3, 6, 7, 8, 10, 11, 12, 14, 15, 18, 19, 22, 23, 24, ..., ;
a(8n+1) > 0;
a(8n+2) > 0; a linear 2ndorder recurrence: a(n) = 2*a(n1)  a(n2) with a(1) = 185 & a(2) = 333;
a(8n+3) = 0;
a(8n+4) = 0;
a(8n+5) > 0;
a(8n+6) = 0;
a(8n+7) = 0;
Prime terms: 5, 17, 29, 157, 641, 3821, 4201, 17749, 21601, 31981, 38273, 44789, 61129, 66173, 72161, 100673, 108541, 114553, 121421, 142973, 165541, 173777, 182141, 204733, 213881, 225889, 235493, 281837, ..., .


LINKS

Ron Knott and Robert G. Wilson v, Table of n, a(n) for n = 1..10000
Ron Knott, Pythagorean Triples and Online Calculators


EXAMPLE

a(1) is 5 since the PPT (3,4,5) satisfies the first stated criterion; a(2) is 17 since the PPT (8,15,17) satisfies the first stated criterion; a(3) = 0 since there exists no PPT that satisfies the stated criteria; etc.


MATHEMATICA

f[n_] := FindInstance[ a^2 + b^2 == c^2 && Mod[c, 4] == 1 && 0 < a < b < c && c  b == n, {a, b, c}, Integers][[1, 3, 2, 1, 1, 3]] + 1 /. 1 + {}[[1, 3, 2, 1, 1, 3]] > 0; f[1] = 5; Array[f, 75]


CROSSREFS

Cf. A008846, A020882, A242219.
Sequence in context: A263906 A160739 A092679 * A090592 A093558 A170866
Adjacent sequences: A277531 A277532 A277533 * A277535 A277536 A277537


KEYWORD

nonn,easy


AUTHOR

Ron Knott and Robert G. Wilson v, Jun 05 2014


STATUS

approved



