login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277487 a(n) = number of primes encountered before reaching (n^2)-1 when starting from k = ((n+1)^2)-1 and iterating map k -> k - A002828(k). 9
1, 0, 1, 0, 0, 1, 2, 1, 1, 0, 2, 1, 2, 0, 3, 2, 0, 3, 0, 2, 0, 1, 4, 2, 3, 2, 4, 2, 0, 3, 3, 2, 5, 3, 4, 3, 3, 3, 2, 4, 2, 2, 4, 3, 3, 3, 6, 3, 1, 3, 4, 2, 6, 3, 3, 2, 5, 5, 5, 5, 4, 3, 7, 4, 4, 6, 4, 2, 4, 6, 5, 5, 5, 4, 7, 4, 4, 7, 4, 0, 5, 6, 7, 4, 4, 9, 4, 5, 2, 6, 6, 7, 11, 3, 6, 4, 9, 5, 7, 7, 7, 6, 8, 8, 7, 6, 4, 6, 5, 7, 8, 5, 9, 8, 8, 5, 12, 7, 5, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

Number of primes on row n of A276574, after the initial zero-row.

Note how for the most n in range 1..10000, a(n) < A277486(n), even though for the most n in the same range A277890(n) < A277891(n). In range n=1..10000, there are only 209 cases where a(n) >= A277486(n).

On the other hand, when a(n) is compared to A277488(n), there is no such marked bias.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

FORMULA

a(n) <= A277891(n).

EXAMPLE

For n=3, starting from k = ((3+1)^2)-1, and iterating k -> A255131(k), yields 15 -> 11 -> 8, where the iteration stops as the next lower number one less than a square has been reached. Of these numbers only 11 is a prime, thus a(3) = 1.

PROG

(PARI)

istwo(n:int)=my(f); if(n<3, return(n>=0); ); f=factor(n>>valuation(n, 2)); for(i=1, #f[, 1], if(bitand(f[i, 2], 1)==1&&bitand(f[i, 1], 3)==3, return(0))); 1

isthree(n:int)=my(tmp=valuation(n, 2)); bitand(tmp, 1)||bitand(n>>tmp, 7)!=7

A002828(n)=if(issquare(n), !!n, if(istwo(n), 2, 4-isthree(n))) \\ From _Charles R Greathouse_ IV, Jul 19 2011

A277487(n) = { my(orgk = ((n+1)^2)-1); my(k = orgk, s = 0); while(((k == orgk) || !issquare(1+k)), s = s + if(isprime(k), 1, 0); k = k - A002828(k)); s; };

for(n=1, 10000, write("b277487.txt", n, " ", A277487(n)));

(Scheme)

(define (A277487 n) (let ((org_k (- (A000290 (+ 1 n)) 1))) (let loop ((k org_k) (s 0)) (if (and (< k org_k) (= 1 (A010052 (+ 1 k)))) s (loop (- k (A002828 k)) (+ s (A010051 k)))))))

CROSSREFS

Cf. A000290, A002828, A010052, A276574, A277486, A277488, A277890, A277891, A278167 (partial sums).

Cf. A277888.

Sequence in context: A125072 A162642 A139146 * A144032 A137686 A143792

Adjacent sequences:  A277484 A277485 A277486 * A277488 A277489 A277490

KEYWORD

nonn

AUTHOR

Antti Karttunen, Nov 08 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 03:54 EDT 2019. Contains 328211 sequences. (Running on oeis4.)