login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277453
a(n) = Sum_{k=0..n} binomial(n,k) * 2^k * n^k * k!.
1
1, 3, 41, 1531, 111393, 13262051, 2336744233, 570621092091, 184341785557121, 76092709735150723, 39064090158380196201, 24408768326642565035963, 18237590837527919131499041, 16056004231253610384348995811, 16448689708899063469247204152553
OFFSET
0,2
FORMULA
a(n) = exp(1/(2*n)) * 2^n * n^n * Gamma(n+1, 1/(2*n)).
a(n) ~ 2^n * n^n * n!.
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n, k]*2^k*n^k*k!, {k, 0, n}], {n, 1, 20}]}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 16 2016
STATUS
approved