OFFSET
1,1
COMMENTS
There are infinitely many squares that are triangular, pentagonal, hexagonal, etc. Also there is no square 10-gonal number, 20-gonal number, 52-gonal number, 64-gonal number, etc. greater than 1 (see A188896). Other than the trivial square n-gonal numbers 0 and 1, there is exactly one square 34-gonal number, one square 74-gonal number, one square 100-gonal number, one square 130-gonal number, etc.
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..238
EXAMPLE
For n = 34, the square 34-gonal numbers are 0, 1, 196.
For n = 74, the square 74-gonal numbers are 0, 1, 2601.
For n = 100, the square 100-gonal numbers are 0, 1, 100.
PROG
(GAP)
G:=[];; for g in [5..100000] do for r in [1..5000] do if 2*g-4=r^2 then Add(G, g); fi; od; od; G; Length(G);
F:=List(G, g->[g, DivisorsInt((g-4)^2)]);;
N:=List([1..Length(F)], i->List([1..Length(F[i][2])], j->[F[i][1], ((F[i][1]-4)*(F[i][1]-4+2*F[i][2][j])+F[i][2][j]^2)/((4*F[i][1]-8)*F[i][2][j])] ) );;
N1:=Filtered(List(List([1..Length(N)], k->Filtered(N[k], l->IsPosInt(l[2]))), Set), o->Length(o)>=2);
N2:=Set(Flat(List([1..Length(N1)], i->List([1..Length(N1[i])], j->N1[i][j][1]))));
CROSSREFS
KEYWORD
nonn
AUTHOR
Muniru A Asiru, Oct 16 2016
STATUS
approved