login
A277403
E.g.f. satisfies: A(x - Integral A(x) dx) = x + Integral A(x) dx.
11
1, 2, 10, 90, 1190, 20930, 462070, 12326790, 386855630, 14000898310, 575440398330, 26532920708070, 1358954912773010, 76682330257445570, 4734315243483414890, 317932511564758225170, 23106045191162625194230, 1809303767549542227341490, 152057767850058496005946030, 13668688227104664304597942910, 1310201986290043690952261887230, 133552478071366935949713096470670, 14440878313638992240490923468851610
OFFSET
1,2
COMMENTS
a(n) is divisible by 10 for n>2 (conjecture).
LINKS
FORMULA
Let G(x) = Integral A(x) dx, then e.g.f. A(x) also satisfies:
(1) A( (A(x) + x)/2 ) = (A'(x) - 1)/(A'(x) + 1).
(2) A(x) = x + 2 * G( (A(x) + x)/2 ).
(3) A(x) = -x + 2 * Series_Reversion(x - G(x)).
(4) R(x) = -x + 2 * Series_Reversion(x + G(x)), where R(A(x)) = x.
(5) R( sqrt( x/2 - R(x)/2 ) ) = x/2 + R(x)/2, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277410(n,k) * 2^(n-k-1).
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 10*x^3/3! + 90*x^4/4! + 1190*x^5/5! + 20930*x^6/6! + 462070*x^7/7! + 12326790*x^8/8! + 386855630*x^9/9! + 14000898310*x^10/10! +...
such that
A(x - Integral A(x) dx) = x + x^2/2! + 2*x^3/3! + 10*x^4/4! + 90*x^5/5! + 1190*x^6/6! + 20930*x^7/7! + 462070*x^8/8! +...+ a(n)*x^(n+1)/(n+1)! +...
which equals x + Integral A(x) dx.
RELATED SERIES.
Let G(x) = Integral A(x) dx, then
G( (A(x) + x)/2 ) = x^2/2! + 5*x^3/3! + 45*x^4/4! + 595*x^5/5! + 10465*x^6/6! + 231035*x^7/7! + 6163395*x^8/8! +...+ a(n)/2*x^n/n! +...
so that A(x) = x + 2 * G( (A(x) + x)/2 ).
A( (A(x) + x)/2 ) = x + 3*x^2/2! + 21*x^3/3! + 241*x^4/4! + 3885*x^5/5! + 81185*x^6/6! + 2093735*x^7/7! + 64463245*x^8/8! + 2313446975*x^9/9! + 95044136915*x^10/10! +...
which equals (A'(x) - 1)/(A'(x) + 1).
MATHEMATICA
m = 24; A[_] = 0;
Do[G[x_] = Integrate[A[x], x]; A[x_] = x + 2 G[(A[x] + x)/2] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x]*Range[0, m-1]! // Rest (* Jean-François Alcover, Oct 20 2019 *)
PROG
(PARI) {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F = x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - intformal(F)) - intformal(F), #A) ); n!*A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 14 2016
STATUS
approved