OFFSET
1,2
COMMENTS
a(n) is divisible by 10 for n>2 (conjecture).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..200
FORMULA
Let G(x) = Integral A(x) dx, then e.g.f. A(x) also satisfies:
(1) A( (A(x) + x)/2 ) = (A'(x) - 1)/(A'(x) + 1).
(2) A(x) = x + 2 * G( (A(x) + x)/2 ).
(3) A(x) = -x + 2 * Series_Reversion(x - G(x)).
(4) R(x) = -x + 2 * Series_Reversion(x + G(x)), where R(A(x)) = x.
(5) R( sqrt( x/2 - R(x)/2 ) ) = x/2 + R(x)/2, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277410(n,k) * 2^(n-k-1).
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 10*x^3/3! + 90*x^4/4! + 1190*x^5/5! + 20930*x^6/6! + 462070*x^7/7! + 12326790*x^8/8! + 386855630*x^9/9! + 14000898310*x^10/10! +...
such that
A(x - Integral A(x) dx) = x + x^2/2! + 2*x^3/3! + 10*x^4/4! + 90*x^5/5! + 1190*x^6/6! + 20930*x^7/7! + 462070*x^8/8! +...+ a(n)*x^(n+1)/(n+1)! +...
which equals x + Integral A(x) dx.
RELATED SERIES.
Let G(x) = Integral A(x) dx, then
G( (A(x) + x)/2 ) = x^2/2! + 5*x^3/3! + 45*x^4/4! + 595*x^5/5! + 10465*x^6/6! + 231035*x^7/7! + 6163395*x^8/8! +...+ a(n)/2*x^n/n! +...
so that A(x) = x + 2 * G( (A(x) + x)/2 ).
A( (A(x) + x)/2 ) = x + 3*x^2/2! + 21*x^3/3! + 241*x^4/4! + 3885*x^5/5! + 81185*x^6/6! + 2093735*x^7/7! + 64463245*x^8/8! + 2313446975*x^9/9! + 95044136915*x^10/10! +...
which equals (A'(x) - 1)/(A'(x) + 1).
MATHEMATICA
m = 24; A[_] = 0;
Do[G[x_] = Integrate[A[x], x]; A[x_] = x + 2 G[(A[x] + x)/2] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x]*Range[0, m-1]! // Rest (* Jean-François Alcover, Oct 20 2019 *)
PROG
(PARI) {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F = x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - intformal(F)) - intformal(F), #A) ); n!*A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 14 2016
STATUS
approved