login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277382 a(n) = n!*LaguerreL(n, -3). 17

%I

%S 1,4,23,168,1473,14988,173007,2228544,31636449,490102164,8219695239,

%T 148262469336,2860241078817,58736954622492,1278727896354687,

%U 29406849577341552,712119108949808193,18108134430393657636,482306685868464422391,13425231879291031821576

%N a(n) = n!*LaguerreL(n, -3).

%C For m > 0, n!*LaguerreL(n, -m) ~ exp(2*sqrt(m*n) - n - m/2) * n^(n + 1/4) / (sqrt(2)*m^(1/4)) * (1 + (3+24*m+4*m^2)/(48*sqrt(m*n))).

%H Alois P. Heinz, <a href="/A277382/b277382.txt">Table of n, a(n) for n = 0..438</a>

%H W. Van Assche, <a href="https://doi.org/10.1137/S0036141099359871">Erratum to "Weighted zero distribution for polynomials orthogonal on an infinite interval"</a>, SIAM J. Math. Anal., 32 (2001), 1169-1170.

%H Oskar Perron, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002168839">Über das Verhalten einer ausgearteten hypergeometrischen Reihe bei unbegrenztem Wachstum eines Parameters</a>, Journal für die reine und angewandte Mathematik (1921), vol. 151, p. 63-78.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LaguerrePolynomial.html">Laguerre Polynomial</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Laguerre_polynomials">Laguerre polynomials</a>

%H <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>

%F E.g.f.: exp(3*x/(1-x))/(1-x).

%F a(n) = Sum_{k=0..n} 3^k*(n-k)!*binomial(n, k)^2.

%F a(n) ~ exp(2*sqrt(3*n)-n-3/2) * n^(n+1/4) / (sqrt(2) * 3^(1/4)) * (1 + 37/(16*sqrt(3*n))).

%F D-finite with recurrence a(n) = 2*(n+1)*a(n-1) - (n-1)^2*a(n-2).

%F Lim n -> infinity a(n)/(n!*BesselI(0, 2*sqrt(3*n))) = exp(-3/2).

%F a(n) = n! * A160613(n)/A160614(n). - _Alois P. Heinz_, Jun 28 2017

%t Table[n!*LaguerreL[n, -3], {n, 0, 20}]

%t CoefficientList[Series[E^(3*x/(1-x))/(1-x), {x, 0, 20}], x] * Range[0, 20]!

%t Table[Sum[Binomial[n, k]^2 * 3^k * (n-k)!, {k,0,n}], {n, 0, 20}]

%o (PARI) for(n=0,30, print1(n!*(sum(k=0,n, binomial(n,k)*(3^k/k!))), ", ")) \\ _G. C. Greubel_, May 09 2018

%o (MAGMA) [Factorial(n)*((&+[Binomial(n,k)*(3^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // _G. C. Greubel_, May 09 2018

%Y Cf. A002720, A087912, A277372.

%Y Column k=3 of A289192.

%Y Cf. A160613, A160614.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Oct 12 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 03:40 EDT 2020. Contains 334815 sequences. (Running on oeis4.)