login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277347 a(n) = Product_{k=1..n} (2*k*(k-1)+1). 1
1, 5, 65, 1625, 66625, 4064125, 345450625, 39035920625, 5660208490625, 1024497736803125, 226413999833490625, 59999709955875015625, 18779909216188879890625, 6854666863908941160078125, 2885814749705664228392890625, 1388076894608424493856980390625, 756501907561591349152054312890625 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Fang (see link) proves that a(n) is never a square for n > 1.

LINKS

Table of n, a(n) for n=1..17.

Jin-Hui Fang, Neither Product{k=1..n} (4k^2+1) nor Product{k=1..n} (2k(k-1)+1) is a perfect square, Integers, A16, Volume 9 (2009).

FORMULA

a(n) ~ cosh(Pi/2) * 2^(n+1) * n^(2*n) / exp(2*n). - Vaclav Kotesovec, Oct 10 2016

a(n) = 2^n * |Gamma(1/2 + i/2 + n)|^2 * cosh(Pi/2)/Pi. - Vladimir Reshetnikov, Oct 11 2016

E.g.f.: 2F0((1-i)/2,(1+i)/2; ; 2*x). - Benedict W. J. Irwin, Oct 19 2016

MATHEMATICA

Table[Product[(2*k*(k-1)+1), {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 10 2016 *)

Round@Table[2^n Abs[Gamma[1/2 + I/2 + n]]^2 Cosh[Pi/2]/Pi, {n, 1, 20}] (* Vladimir Reshetnikov, Oct 11 2016 *)

Rest@(CoefficientList[Series[HypergeometricPFQ[{1/2 - I/2, 1/2 + I/2}, {}, 2 x], {x, 0, 20}], x]*Range[0, 20]!) (* Benedict W. J. Irwin, Oct 19 2016 *)

PROG

(PARI) a(n) = prod(k=1, n, 2*k*(k-1)+1);

CROSSREFS

Cf. A001844.

Sequence in context: A157097 A234295 A251575 * A276755 A218221 A046881

Adjacent sequences:  A277344 A277345 A277346 * A277348 A277349 A277350

KEYWORD

nonn

AUTHOR

Michel Marcus, Oct 10 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 22:12 EDT 2019. Contains 322328 sequences. (Running on oeis4.)