login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277329 a(0)=0, for n >= 1, a(2n) = a(n)+1, a(4n-1) = a(n)+1, a(4n+1) = a(n)+1. 4
0, 1, 2, 2, 3, 2, 3, 3, 4, 3, 3, 3, 4, 3, 4, 4, 5, 4, 4, 3, 4, 3, 4, 4, 5, 4, 4, 4, 5, 4, 5, 5, 6, 5, 5, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 5, 5, 6, 5, 5, 4, 5, 4, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 5, 6, 5, 5, 5, 6, 5, 5, 4, 5, 4, 5, 5, 6, 5, 5, 4, 5, 4, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 5, 6, 5, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 5, 6, 5, 6, 6, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) gives the index of the greatest prime dividing A260443(n).

Each n >= 1 occurs for the first time at 2^(n-1), which are also the positions of records.

For n >= 1, a(n) = number of terms in row n of A125184.

LINKS

Table of n, a(n) for n=0..120.

FORMULA

a(0)=0, for n >= 1, a(2n) = a(n)+1, a(4n-1) = a(n)+1, a(4n+1) = a(n)+1.

Other identities. For all n >= 0:

a(n) = A061395(A260443(n)).

a(2n+1) = max(a(n),a(n+1)).

For n >= 1, a(n) = 1+A057526(n).

PROG

(Scheme)

(define (A277329 n) (if (zero? n) n (+ 1 (A057526 n)))) ;; Code for A057526 given in that entry.

;; Standalone recurrence:

(definec (A277329 n) (cond ((zero? n) n) ((even? n) (+ 1 (A277329 (/ n 2)))) ((= 3 (modulo n 4)) (+ 1 (A277329 (/ (+ 1 n) 4)))) (else (+ 1 (A277329 (/ (+ -1 n) 4))))))

CROSSREFS

One more than A057526.

Cf. A061395, A125184, A260443.

Sequence in context: A182745 A129843 A050430 * A071330 A092333 A303297

Adjacent sequences:  A277326 A277327 A277328 * A277330 A277331 A277332

KEYWORD

nonn

AUTHOR

Antti Karttunen, Oct 27 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 17:32 EDT 2019. Contains 328373 sequences. (Running on oeis4.)