login
A277323
Even bisection of A260443 (the odd terms): a(n) = A260443(2*n).
4
1, 3, 5, 15, 7, 75, 35, 105, 11, 525, 245, 2625, 77, 3675, 385, 1155, 13, 5775, 2695, 128625, 847, 643125, 18865, 202125, 143, 282975, 29645, 1414875, 1001, 444675, 5005, 15015, 17, 75075, 35035, 15563625, 11011, 346644375, 2282665, 108945375, 1859, 544726875, 15978655, 12132553125, 121121, 3813088125, 2697695
OFFSET
0,2
LINKS
FORMULA
a(n) = A260443(2*n).
a(0) = 1; for n >= 1, a(n) = A003961(A260443(n)).
Other identities. For all n >= 0:
A007949(a(n)) = A000035(n).
A112765(a(n)) is the interleaving of A000035 and A005811, probably A101979.
MATHEMATICA
a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[a[2 n], {n, 0, 46}] (* Michael De Vlieger, Apr 05 2017 *)
PROG
(Scheme, two versions)
(define (A277323 n) (A260443 (* 2 n)))
(define (A277323 n) (if (zero? n) 1 (A003961 (A260443 n))))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 10 2016
STATUS
approved