login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277314 Number of nonzero coefficients in Stern polynomial B(n,t). 4
0, 1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 3, 2, 3, 3, 4, 1, 4, 3, 3, 2, 3, 3, 4, 2, 4, 3, 4, 3, 4, 4, 5, 1, 5, 4, 4, 3, 4, 3, 4, 2, 4, 3, 4, 3, 4, 4, 5, 2, 5, 4, 4, 3, 4, 4, 5, 3, 5, 4, 5, 4, 5, 5, 6, 1, 6, 5, 5, 4, 5, 4, 5, 3, 5, 4, 4, 3, 4, 4, 5, 2, 5, 4, 4, 3, 4, 4, 5, 3, 5, 4, 5, 4, 5, 5, 6, 2, 6, 5, 5, 4, 5, 4, 5, 3, 5, 4, 5, 4, 5, 5, 6, 3, 6, 5, 5, 4, 5, 5, 6, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

a(n) is the number of nonzero terms on row n of A125184.

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..8192

FORMULA

a(n) = A001221(A260443(n)).

a(n) = A069010(A277020(n)).

a(n) = 1 + A243055(A260443(n)). [Because each term of A260443 is in A073491.]

a(2n) = a(n).

For all n >= 0 , a(n) <= A002487(n).

PROG

(Scheme)

(define (A277314 n) (A001221 (A260443 n)))

;; Or as a standalone program:

(define (A277314 n) (length (filter positive? (A260443as_coeff_list n))))

(definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))

(define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))

CROSSREFS

Cf. A001221, A002487, A069010, A073491, A125184, A243055, A260443, A277020.

Sequence in context: A302480 A000374 A256757 * A120562 A178692 A033666

Adjacent sequences:  A277311 A277312 A277313 * A277315 A277316 A277317

KEYWORD

nonn

AUTHOR

Antti Karttunen, Oct 10 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 19 12:35 EDT 2019. Contains 325159 sequences. (Running on oeis4.)