This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277294 G.f. A(x) satisfies: Series_Reversion( A(x) + A(x)^4 ) = A(x) - A(x)^4. 2
 1, 2, 35, 812, 21359, 623244, 18568947, 638475040, 13249877870, 2024051330358, -355660668390645, 130426094235366208, -54120354853298252400, 27045033537893084984896, -15918675371944450999486319, 10905983125914263654567255488, -8603776324190250513027830925715, 7743542274281960968631431340349870, -7886327135586560316787947739703112447, 9023297352140462809043434127286176617288, -11524615288427474577090651960651636283169590 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA G.f. A(x) = Sum_{n>=1} a(n) * x^(6*n-5) satisfies: (1) A( A(x) + A(x)^4 ) = G(x), (2) G( A(x) - A(x)^4 ) = A(x), (3) A( A(x) - A(x)^4 ) = -G(-x), (4) A( A(x-x^4) + A(x-x^4)^4 ) = x, where G(x) = x + G(x)^4 = Sum_{n>=1} binomial(4*n-3,n-1)/(4*n-3) * x^(3*n-2). EXAMPLE G.f.: A(x) = x + 2*x^7 + 35*x^13 + 812*x^19 + 21359*x^25 + 623244*x^31 + 18568947*x^37 + 638475040*x^43 + 13249877870*x^49 + 2024051330358*x^55 +... such that Series_Reversion( A(x) + A(x)^4 ) = A(x) - A(x)^4, where A(x)^4 = x^4 + 8*x^10 + 164*x^16 + 4120*x^22 + 113970*x^28 + 3416128*x^34 + 104776764*x^40 + 3565389600*x^46 + 88390775151*x^52 +... A(x) + A(x)^4 = x + x^4 + 2*x^7 + 8*x^10 + 35*x^13 + 164*x^16 + 812*x^19 + 4120*x^22 + 21359*x^25 + 113970*x^28 + 623244*x^31 + 3416128*x^34 + 18568947*x^37 + 104776764*x^40 + 638475040*x^43 + 3565389600*x^46 + 13249877870*x^49 + 88390775151*x^52 + 2024051330358*x^55 +... Also, A( A(x) + A(x)^4 ) = x + x^4 + 4*x^7 + 22*x^10 + 140*x^13 + 969*x^16 + 7084*x^19 + 53820*x^22 +...+ binomial(4*n-3,n-1)/(4*n-3)*x^(3*n-2) +... which is a g.f. of A002293. Note that the following is an integer series: sqrt(A(x)/x) = 1 + x^6 + 17*x^12 + 389*x^18 + 10146*x^24 + 294863*x^30 + 8741468*x^36 + 301536587*x^42 + 6008625027*x^48 + 994498807123*x^54 - 179176440388960*x^60 + 65367342797524884*x^66 - 27123073712119583646*x^72 +... PROG (PARI) {a(n) = my(Oxn=x*O(x^(6*n)), A = x +Oxn); for(i=1, 6*n, A = A + (x - subst(A + A^4, x, A - A^4 ))/2); polcoeff(A, 6*n-5)} for(n=1, 25, print1(a(n), ", ")) CROSSREFS Cf. A277292, A277293, A002293. Sequence in context: A112442 A066549 A279734 * A191807 A245052 A266316 Adjacent sequences:  A277291 A277292 A277293 * A277295 A277296 A277297 KEYWORD sign AUTHOR Paul D. Hanna, Oct 12 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 15:37 EDT 2019. Contains 325144 sequences. (Running on oeis4.)