login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277292 G.f. A(x) satisfies: Series_Reversion( A(x) + A(x)^2 ) = A(x) - A(x)^2. 5
1, 1, 4, 21, 122, 758, 4958, 33509, 233810, 1641150, 12364368, 71807506, 1354944972, -33794258600, 2524565441138, -186642439700891, 16196862324254354, -1602823227559245434, 179707702260054046760, -22656977557634759678794, 3191199098536326709613676, -499206960572108744520132444, 86277300996554233583925645468, -16395890677314419248813441481150 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..201

FORMULA

G.f. A(x) = Sum_{n>=1} a(n) * x^(2*n-1) satisfies:

(1) A( A(x) + A(x)^2 ) = C(x),

(2) C( A(x) - A(x)^2 ) = A(x),

(3) A( A(x) - A(x)^2 ) = -C(-x),

(4) A( A(x-x^2) + A(x-x^2)^2 ) = x,

where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers, A000108.

EXAMPLE

G.f.: A(x) = x + x^3 + 4*x^5 + 21*x^7 + 122*x^9 + 758*x^11 + 4958*x^13 + 33509*x^15 + 233810*x^17 + 1641150*x^19 + 12364368*x^21 +...

such that Series_Reversion( A(x) + A(x)^2 ) = A(x) - A(x)^2, where

A(x)^2 = x^2 + 2*x^4 + 9*x^6 + 50*x^8 + 302*x^10 + 1928*x^12 + 12849*x^14 + 88122*x^16 + 621022*x^18 + 4411180*x^20 +...

A(x) + A(x)^2 = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 9*x^6 + 21*x^7 + 50*x^8 + 122*x^9 + 302*x^10 + 758*x^11 + 1928*x^12 + 4958*x^13 + 12849*x^14 + 33509*x^15 + 88122*x^16 + 233810*x^17 + 621022*x^18 + 1641150*x^19 + 4411180*x^20 +...

Also,

A( A(x) + A(x)^2 ) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 +...

which equals the Catalan series (A000108).

PROG

(PARI) {a(n) = my(Oxn=x*O(x^(2*n)), A = x +Oxn); for(i=1, 2*n, A = A + (x - subst(A+A^2, x, A-A^2 ))/2); polcoeff(A, 2*n-1)}

for(n=1, 30, print1(a(n), ", "))

CROSSREFS

Cf. A318008, A277293, A277294, A000108, A179270, A277292.

Sequence in context: A101810 A274969 A236525 * A001888 A103769 A003014

Adjacent sequences:  A277289 A277290 A277291 * A277293 A277294 A277295

KEYWORD

sign

AUTHOR

Paul D. Hanna, Oct 12 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 20:28 EDT 2019. Contains 328197 sequences. (Running on oeis4.)