login
A277283
Expansion of Product_{n>=1} (1 - x^(6*n))/(1 - x^n)^6 in powers of x.
3
1, 6, 27, 98, 315, 918, 2491, 6366, 15498, 36182, 81501, 177876, 377558, 781626, 1582173, 3137832, 6108051, 11687598, 22012816, 40855674, 74799828, 135210868, 241511115, 426570624, 745516240, 1290006276, 2211202692, 3756468658, 6327617862, 10572763842
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
FORMULA
G.f.: Product_{n>=1} (1 - x^(6*n))/(1 - x^n)^6.
G.f.: (x^6; x^6)_inf/((x; x)_inf)^6, where (a; q)_inf is the q-Pochhammer symbol. - Vladimir Reshetnikov, Nov 20 2016
a(n) ~ 35*sqrt(35) * exp(sqrt(35*n)*Pi/3) / (3456*sqrt(3)*n^2). - Vaclav Kotesovec, Nov 21 2016
EXAMPLE
G.f.: 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2491*x^6 + ...
MATHEMATICA
(QPochhammer[x^6, x^6]/QPochhammer[x, x]^6 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
nmax = 50; CoefficientList[Series[Product[(1 - x^(6*k))/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 21 2016 *)
PROG
(PARI) first(n)=my(x='x); Vec(prod(k=1, n, (1-x^(6*k))/(1-x^k)^6, 1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016
CROSSREFS
Cf. Expansion of Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k in powers of x: A015128 (k=2), A273845 (k=3), A274327 (k=4), A277212 (k=5), this sequence (k=6), A160539 (k=7).
Sequence in context: A071734 A160507 A182821 * A160533 A023005 A001874
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 07 2016
STATUS
approved