login
A277281
Maximal coefficient (ignoring signs) in Hermite polynomial of order n.
4
1, 2, 4, 12, 48, 160, 720, 3360, 13440, 80640, 403200, 2217600, 13305600, 69189120, 484323840, 2905943040, 19372953600, 131736084480, 846874828800, 6436248698880, 42908324659200, 337903056691200, 2477955749068800, 18997660742860800, 151981285942886400
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Hermite Polynomial.
EXAMPLE
For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient (ignoring signs) is 160, so a(5) = 160.
MATHEMATICA
Table[Max@Abs@CoefficientList[HermiteH[n, x], x], {n, 0, 25}]
PROG
(PARI) a(n) = vecmax(apply(x->abs(x), Vec(polhermite(n)))); \\ Michel Marcus, Oct 09 2016
(Python)
from sympy import hermite, Poly
def a(n): return max(map(abs, Poly(hermite(n, x), x).coeffs())) # Indranil Ghosh, May 26 2017
CROSSREFS
Cf. A059343, A277280 (with signs).
Sequence in context: A207647 A152453 A368814 * A172452 A004527 A002871
KEYWORD
nonn
AUTHOR
STATUS
approved