login
A277274
Positive integers n such that 3^n == 11 (mod n).
8
1, 2, 1162, 1692934, 3851999, 274422823, 14543645261, 492230729674, 773046873382, 13010754158393, 31446154470014, 583396812890467, 598371102650063
OFFSET
1,2
COMMENTS
No other terms below 10^15. Some larger terms: 38726095838775708310162, 2682806839696008709567739369. - Max Alekseyev, Oct 12 2016
EXAMPLE
3 == 11 mod 1, so 1 is a term.
9 == 11 mod 2, so 2 is a term.
MATHEMATICA
k = 3; lst = {1, 2}; While[k < 12000000001, If[ PowerMod[3, k, k] == 11, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Oct 08 2016 *)
CROSSREFS
Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277126 (k=7), this sequence (k=11).
Sequence in context: A340290 A119554 A272246 * A036104 A036106 A285691
KEYWORD
nonn,more
AUTHOR
Seiichi Manyama, Oct 08 2016
EXTENSIONS
a(7)-a(13) from Max Alekseyev, Oct 12 2016
STATUS
approved