login
Triangular array T read by rows: T(n,k) gives the additive orders k modulo n, for k = 0,1, ..., n-1.
2

%I #12 Jul 26 2023 03:16:40

%S 1,1,2,1,3,3,1,4,2,4,1,5,5,5,5,1,6,3,2,3,6,1,7,7,7,7,7,7,1,8,4,8,2,8,

%T 4,8,1,9,9,3,9,9,3,9,9,1,10,5,10,5,2,5,10,5,10,1,11,11,11,11,11,11,11,

%U 11,11,11,1,12,6,4,3,12,2,12,3,4,6,12

%N Triangular array T read by rows: T(n,k) gives the additive orders k modulo n, for k = 0,1, ..., n-1.

%C As a sequence A054531(n) = a(n+1), n >= 1.

%C As a triangular array this is the row reversed version of A054531.

%C The additive order of an element x of a group (G, +) is the least positive integer j with j*x := x + x + ... + x (j summands) = 0.

%C Equals A106448 when the first column (k = 0) of ones is removed. - _Georg Fischer_, Jul 26 2023

%H Indranil Ghosh, <a href="/A277227/b277227.txt">Rows 1..100 of triangle, flattened</a>

%F T(n, k) = order of the elements k of the finite abelian group (Z/(n Z), +), for k = 0, 1, ..., n-1.

%F T(n, k) = n/GCD(n, k), n >= 1, k = 0, 1, ..., n-1.

%F T(n, k) = A054531(n, n-k), n >=1, k = 0, 1, ..., n-1.

%e The triangle begins:

%e n\k 0 1 2 3 4 5 6 7 8 9 10 11 ...

%e 1: 1

%e 2: 1 2

%e 3: 1 3 3

%e 4: 1 4 2 4

%e 5: 1 5 5 5 5

%e 6: 1 6 3 2 3 6

%e 7: 1 7 7 7 7 7 7

%e 8: 1 8 4 8 2 8 4 8

%e 9: 1 9 9 3 9 9 3 9 9

%e 10: 1 10 5 10 5 2 5 10 5 10

%e 11: 1 11 11 11 11 11 11 11 11 11 11

%e 12: 1 12 6 4 3 12 2 12 3 4 6 12

%e ...

%e T(n, 0) = 1*0 = 0 = 0 (mod n), and n/GCD(n,0) = n/n = 1.

%e T(4, 2) = 2 because 2 + 2 = 4 = 0 (mod 4) and 2 is not 0 (mod 4).

%e T(4, 2) = n/GCD(2, 4) = 4/2 = 2.

%Y Cf. A054531, A106448.

%K nonn,tabl,easy

%O 1,3

%A _Wolfdieter Lang_, Oct 20 2016