login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and four squares have one of the colors.
1

%I #30 Sep 08 2022 08:46:17

%S 1,34,464,3182,14769,53044,158976,416140,980625,2124310,4295376,

%T 8199674,14907809,25992232,43700224,71167704,112680801,173990730,

%U 262690000,388656070,564571601,806527964,1134722304,1574255332,2156041329,2917838014,3905408976,5173826770,6788930625

%N Number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and four squares have one of the colors.

%C See the k=4 column of table A054772(n, k), with more explanations there.

%H Colin Barker, <a href="/A277226/b277226.txt">Table of n, a(n) for n = 2..1000</a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (6,-12,2,27,-36,0,36,-27,-2,12,-6,1).

%F a(n) = A054772(n, 4) = A054772(n, n^2-4), n >= 2.

%F From _Colin Barker_, Oct 09 2016: (Start)

%F G.f.: x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5+272*x^6+28*x^7+x^8) / ((1-x)^9*(1+x)^3).

%F a(n) = (n^8-6*n^6+14*n^4)/96 for n even.

%F a(n) = (n^8-6*n^6+14*n^4-6*n^2-3)/96 for n odd. (End)

%F From _Stefan Hollos_, Oct 16 2016: (Start)

%F a(n) = (C(n^2,4) + C(n^2/2,2) + n^2/2)/4 for n even,

%F a(n) = (C(n^2,4) + C((n^2-1)/2,2) + (n^2-1)/2)/4 for n odd. (End)

%t CoefficientList[Series[x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5 +272*x^6+28*x^7+x^8)/((1-x)^9*(1+x)^3), {x, 0, 50}], x] (* _G. C. Greubel_, Oct 22 2018 *)

%o (PARI) Vec(x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5+272*x^6+28*x^7 +x^8)/((1-x)^9*(1+x)^3) + O(x^40)) \\ _Colin Barker_, Oct 16 2016

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5 +272*x^6+28*x^7+x^8)/((1-x)^9*(1+x)^3))); // _G. C. Greubel_, Oct 22 2018

%Y Cf. A054772, A000012 (k=0), A004652 (k=1), A212714 (k=2), A275799 (k=3).

%K nonn,easy

%O 2,2

%A _Wolfdieter Lang_, Oct 06 2016