This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277203 Number of distinct chromatic symmetric functions realizable by a graph on n vertices. 17
 1, 2, 4, 11, 33, 146, 939, 10932 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895). - Gus Wiseman, Nov 21 2018 LINKS Richard P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Advances in Math. 111 (1995), 166-194. Richard P. Stanley, Graph colorings and related symmetric functions: ideas and applications, Discrete Mathematics 193 (1998), 267-286. EXAMPLE For n = 3, under the p basis, the CSF's are: p_{1, 1, 1}, p_{1, 1, 1} - p_{2, 1}, p_{1, 1, 1} - 2p_{2, 1} + p_{3}, p_{1, 1, 1} - 3p_{2, 1} + 2p_{3}. From Gus Wiseman, Nov 21 2018: (Start) The a(4) = 11 chromatic symmetric functions (m is the augmented monomial symmetric function basis):                                      m(1111)                             m(211) + m(1111)                            2m(211) + m(1111)           m(22) +          2m(211) + m(1111)                            3m(211) + m(1111)           m(22) +          3m(211) + m(1111)                    m(31) + 3m(211) + m(1111)          2m(22) +          4m(211) + m(1111)           m(22) +  m(31) + 4m(211) + m(1111)          2m(22) + 2m(31) + 5m(211) + m(1111)   m(4) + 3m(22) + 4m(31) + 6m(211) + m(1111) (End) MATHEMATICA spsu[_, {}]:={{}}; spsu[foo_, set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@spsu[Select[foo, Complement[#, Complement[set, s]]=={}&], Complement[set, s]]]/@Cases[foo, {i, ___}]; chromSF[g_]:=Sum[m[Sort[Length/@stn, Greater]], {stn, spsu[Select[Subsets[Union@@g], Select[DeleteCases[g, {_}], Function[ed, Complement[ed, #]=={}]]=={}&], Union@@g]}]; simpleSpans[n_]:=simpleSpans[n]=If[n==0, {{}}, Union@@Table[If[#=={}, Union[ine, {{n}}], Union[Complement[ine, List/@#], {#, n}&/@#]]&/@Subsets[Range[n-1]], {ine, simpleSpans[n-1]}]]; Table[Length[Union[chromSF/@simpleSpans[n]]], {n, 6}] (* Gus Wiseman, Nov 21 2018 *) CROSSREFS Cf. A000088, A000110, A000569, A006125, A229048, A240936, A245883, A277204, A277205, A321750, A321751, A321895, A321911. Sequence in context: A123435 A123409 A123472 * A123905 A123442 A123405 Adjacent sequences:  A277200 A277201 A277202 * A277204 A277205 A277206 KEYWORD nonn,more AUTHOR Sam Heil and Caleb Ji, Oct 04 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 19:51 EST 2019. Contains 329879 sequences. (Running on oeis4.)