login
A277188
The binomial sum a(n) = Sum_{k=0..n}(binomial(n,k)*binomial(n+1,k+1)*binomial(n+2,k+2)).
1
1, 7, 43, 281, 1896, 13112, 92359, 659941, 4769758, 34797170, 255838760, 1893389720, 14091400480, 105385445856, 791504226943, 5966958725021, 45133376297922, 342400478465678, 2604549070175770, 19860078537996958, 151769147958738016
OFFSET
0,2
FORMULA
a(n) = (1/2)*(n+1)^2*(n+2)*hypergeometric({-n,-n,-n},{2,3},-1).
From Vaclav Kotesovec, Oct 04 2016: (Start)
Recurrence: (n+2)^2*(6*n^3 + 3*n^2 - 3*n - 2)*a(n) = (42*n^5 + 147*n^4 + 147*n^3 - 8*n^2 - 60*n - 16)*a(n-1) + 8*(n-1)*n*(6*n^3 + 21*n^2 + 21*n + 4)*a(n-2).
a(n) ~ 2^(3*n+4)/(sqrt(3)*Pi*n).
(End)
MATHEMATICA
Table[Sum[Binomial[n, k]Binomial[n+1, k+1]Binomial[n+2, k+2], {k, 0, n}], {n, 0, 100}]
PROG
(Maxima) makelist((n+1)^2*(n+2)/2*hypergeometric([-n, -n, -n], [2, 3], -1), n, 0, 12);
(PARI) a(n) = sum(k=0, n, (binomial(n, k)*binomial(n+1, k+1)*binomial(n+2, k+2))); \\ Michel Marcus, Oct 04 2016
CROSSREFS
Sequence in context: A126502 A286911 A343351 * A356559 A351757 A338675
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Oct 04 2016
STATUS
approved