%I #20 Nov 05 2016 08:47:32
%S 34,68,102,137,171,205,239,274,308,342,376,411,445,479,513,548,582,
%T 616,650,685,719,753,787,822,856,890,924,959,993,1027,1061,1096,1130,
%U 1164,1198,1233,1267,1301,1335,1370,1404,1438,1472,1507,1541,1575,1609,1644,1678
%N a(n) = floor(n/(1-Pi/(sqrt(5)+1))).
%C The goal is to generate a ratio near 1 from two well-known constants.
%H Paulo Romero Zanconato Pinto, <a href="/A277113/b277113.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%F a(n) = floor(n/(1-Pi/(sqrt(5)+1))).
%e For n = 10 we have that floor(10/(1-Pi/(sqrt(5)+1))) = floor(10/0.02919448...) = floor(342.5304983...) so a(10) = 342.
%p A277113:=n->floor(n/(1-Pi/(sqrt(5)+1))): seq(A277113(n), n=1..100);
%t f[n_] := Floor[n/(1-Pi/(Sqrt[5]+1))]; Array[f, 100, 1]
%o (PARI) a(n) = n\(1-Pi/(sqrt(5)+1)) \\ _Michel Marcus_, Oct 29 2016
%Y Complement of A277112.
%Y Cf. A000796, A001622, A094881, A094882.
%K nonn
%O 1,1
%A _Paulo Romero Zanconato Pinto_, Sep 30 2016
%E More terms from _Michel Marcus_, Oct 29 2016