login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277099 Number of partitions of n containing no part i of multiplicity i+1. 6
1, 1, 1, 3, 4, 6, 8, 12, 18, 24, 32, 45, 59, 79, 104, 137, 177, 229, 295, 377, 477, 605, 761, 956, 1193, 1484, 1840, 2276, 2800, 3441, 4210, 5141, 6261, 7603, 9206, 11132, 13419, 16144, 19380, 23223, 27763, 33134, 39467, 46931, 55703, 66008, 78085, 92239, 108776, 128091, 150617 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = A276433(n,0).

G.f.: g(x) = Product_{i>=1} (1/(1-x^i) - x^(i*(i+1))).

EXAMPLE

a(4) = 4 because we have [1,1,1,1], [1,3], [2,2], and [4]; the partition [1,1,2] does not qualify.

MAPLE

g:= product(1/(1-x^i)-x^(i*(i+1)), i = 1 .. 100): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);

# second Maple program:

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(`if`(i+1=j, 0, b(n-i*j, i-1)), j=0..n/i)))

    end:

a:= n-> b(n$2):

seq(a(n), n=0..60);  # Alois P. Heinz, Sep 30 2016

MATHEMATICA

nmax = 50; CoefficientList[Series[Product[(1/(1-x^k) - x^(k*(k+1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 30 2016 *)

CROSSREFS

Cf. A276427, A276428, A276429, A276433, A276434, A277100, A277101, A277102.

Sequence in context: A063759 A163978 A145751 * A146566 A204658 A139041

Adjacent sequences:  A277096 A277097 A277098 * A277100 A277101 A277102

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Sep 30 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 11:25 EST 2021. Contains 340236 sequences. (Running on oeis4.)