login
Number of primes <= n-th Bell number.
3

%I #18 Sep 03 2024 08:25:39

%S 0,0,1,3,6,15,46,151,570,2376,10961,54941,297220,1720725,10602541,

%T 69176095,475881437,3439093081,26026621617,205694058211,1693554793730,

%U 14494778231067,128711956613875,1183763037547762,11258075170582653,110558809039675629,1119649516271861536

%N Number of primes <= n-th Bell number.

%H Amiram Eldar, <a href="/A277063/b277063.txt">Table of n, a(n) for n = 0..28</a> (calculated using Kim Walisch's primecount)

%H Kim Walisch, <a href="https://github.com/kimwalisch/primecount">Fast C++ prime counting function implementation (primecount)</a>.

%F a(n) = A000720(A000110(n)). - _Michel Marcus_, Nov 10 2016

%t Table[PrimePi[BellB[n]], {n, 0, 20}]

%o (Magma) [#PrimesUpTo(Bell(n)): n in [0..14]];

%Y Cf. A000110, A000720, A054782, A277062.

%K nonn

%O 0,4

%A _Vincenzo Librandi_, Nov 10 2016

%E a(21)-a(26) from _Charles R Greathouse IV_, Nov 10 2016