login
A277048
Primes p such that the multiplicative order of 3 modulo p is prime.
2
11, 13, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 431, 467, 479, 503, 563, 587, 683, 719, 839, 863, 887, 983, 1019, 1091, 1093, 1187, 1223, 1283, 1307, 1319, 1367, 1439, 1487, 1511, 1523, 1583, 1597, 1619, 1669, 1823, 1871, 1907, 2027
OFFSET
1,1
COMMENTS
Odd primes that divide 3^p-1 for some prime p. - Robert Israel, Nov 14 2016
LINKS
MAPLE
select(p -> isprime(p) and isprime(numtheory:-order(3, p)), [seq(p, p=5..10000, 2)]); # Robert Israel, Nov 14 2016
MATHEMATICA
Select[Prime@ Range@ 310, PrimeQ@ MultiplicativeOrder[3, #] &] (* Michael De Vlieger, Oct 28 2016 *)
PROG
(Magma) [p: p in PrimesInInterval(2, 4000) | IsPrime(Modorder(3, p))];
(PARI) isok(n) = isprime(n) && isprime(znorder(Mod(3, n))); \\ Michel Marcus, Oct 28 2016
CROSSREFS
Sequence in context: A166484 A127043 A084952 * A275598 A090433 A022325
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Oct 28 2016
STATUS
approved