login
A277046
Triangle read by rows: T(n,k) = 2^n - n + k - 1 for n >= 1, with 1 <= k <= 2n-1.
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 27, 28, 29, 30, 31, 32, 33, 34, 35, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519
OFFSET
1,2
LINKS
EXAMPLE
Triangle begins:
1;
2, 3, 4;
5, 6, 7, 8, 9;
12, 13, 14, 15, 16, 17, 18;
27, 28, 29, 30, 31, 32, 33, 34, 35;
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68;
...
Written as an isosceles triangle the sequence begins:
. 1;
. 2, 3, 4;
. 5, 6, 7, 8, 9;
. 12, 13, 14, 15, 16, 17, 18;
. 27, 28, 29, 30, 31, 32, 33, 34, 35;
. 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68;
..
MATHEMATICA
Table[2^n-n+k-1, {n, 10}, {k, 2n-1}]//Flatten (* Harvey P. Dale, Nov 27 2021 *)
CROSSREFS
Row lengths are A005408.
Row sums give A118414.
Column 1 gives A000325, n>=1.
Middle diagonal gives A000225.
Right border gives A083706.
Cf. A118413.
Sequence in context: A190218 A055569 A351119 * A305462 A072618 A267762
KEYWORD
nonn,tabf
AUTHOR
Miquel Cerda, Sep 27 2016
EXTENSIONS
Definition from Omar E. Pol, Sep 28 2016
STATUS
approved