login
A277000
Numerators of an asymptotic series for the Gamma function (even power series).
5
1, -1, 19, -2561, 874831, -319094777, 47095708213409, -751163826506551, 281559662236405100437, -49061598325832137241324057, 5012066724315488368700829665081, -26602063280041700132088988446735433, 40762630349420684160007591156102493590477
OFFSET
0,3
COMMENTS
Let y = x+1/2 then Gamma(x+1) ~ sqrt(2*Pi)*((y/E)*Sum_{k>=0} r(k)/y^(2*k))^y as x -> oo and r(k) = A277000(k)/A277001(k) (see example 6.1 in the Wang reference).
FORMULA
a(n) = numerator(b(2*n)) with b(n) = Y_{n}(0, z_2, z_3,..., z_n)/n! with z_k = k!*Bernoulli(k,1/2)/(k*(k-1)) and Y_{n} the complete Bell polynomials.
The rational numbers have the recurrence r(n) = (1/(2*n))*Sum_{m=0..n-1} Bernoulli(2*m+2,1/2)*r(n-m-1)/(2*m+1)) for n>=1, r(0)=1. - Peter Luschny, Sep 30 2016
EXAMPLE
The underlying rational sequence starts:
1, 0, -1/24, 0, 19/5760, 0, -2561/2903040, 0, 874831/1393459200, 0, ...
MAPLE
b := n -> CompleteBellB(n, 0, seq((k-2)!*bernoulli(k, 1/2), k=2..n))/n!:
A277000 := n -> numer(b(2*n)): seq(A277000(n), n=0..12);
# Alternatively the rational sequence by recurrence:
R := proc(n) option remember; local k; `if`(n=0, 1,
add(bernoulli(2*m+2, 1/2)* R(n-m-1)/(2*m+1), m=0..n-1)/(2*n)) end:
seq(numer(R(n)), n=0..12); # Peter Luschny, Sep 30 2016
MATHEMATICA
CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
b[n_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, 1/2], {k, 2, n}]]]/n!;
a[n_] := Numerator[b[2n]];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Sep 09 2018 *)
CROSSREFS
Cf. A001163/A001164 (Stirling), A182935/A144618 (De Moivre), A005146/A005147 (Stieltjes), A090674/A090675 (Lanczos), A181855/A181856 (Nemes), A182912/A182913 (NemesG), A182916/A182917 (Wehmeier), A182919/A182920 (Gosper), A182914/A182915, A277002/A277003 (odd power series).
Cf. A276667/A276668 (the arguments of the Bell polynomials).
Sequence in context: A364851 A172651 A183739 * A055415 A196541 A221296
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Sep 25 2016
STATUS
approved