login
A276985
Triangle read by rows: T(n,k) = number of k-dimensional elements in an n-dimensional cross-polytope, n>=1, 0<=k<n.
0
2, 4, 4, 6, 12, 8, 8, 24, 32, 16, 10, 40, 80, 80, 32, 12, 60, 160, 240, 192, 64, 14, 84, 280, 560, 672, 448, 128, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120
OFFSET
1,1
COMMENTS
It appears that this is 2*A193862 (but with a different offset) and that the sum of terms of the n-th row is A024023(n) = 3^n - 1. - Michel Marcus, Sep 29 2016
REFERENCES
H. S. M. Coxeter, Regular Polytopes, Third Edition, Dover Publications, 1973, ISBN 9780486141589.
LINKS
Wikipedia, Cross-polytope.
D. A. Zaitsev, A generalized neighborhood for cellular automata, Theoretical Computer Science, 666 (2017), 21-35.
FORMULA
a(n, k) = 2^(k+1) * binomial(n, k+1) (cf. Coxeter, 1973, formula 7.22).
a(n,k) = A182059(n,k) = A013609(n,k) . - R. J. Mathar, May 03 2017
EXAMPLE
T(4, 1..4) = 8, 24, 32, 16, because the 16-cell has 8 0-faces (vertices), 24 1-faces (edges), 32 2-faces (faces) and 16 3-faces (cells).
Triangle starts
2
4, 4
6, 12, 8
8, 24, 32, 16
10, 40, 80, 80, 32
12, 60, 160, 240, 192, 64
14, 84, 280, 560, 672, 448, 128
16, 112, 448, 1120, 1792, 1792, 1024, 256
18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512
20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
MATHEMATICA
Table[2^(k + 1) Binomial[n, k + 1], {n, 10}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Sep 25 2016 *)
PROG
(PARI) T(n, k) = 2^(k+1)*binomial(n, k+1)
trianglerows(n) = for(x=1, n, for(y=0, x-1, print1(T(x, y), ", ")); print(""))
trianglerows(10) \\ print initial 10 rows of triangle
CROSSREFS
Cf. A038207 (hypercube), A135278 (simplex).
Rows: A005843(n), A046092(n), A130809(n+2), A130810(n+3).
Columns: A000079(n), A001787(n), A001788(n), A001789(n+3).
Sequence in context: A359294 A224487 A185342 * A081238 A333823 A207254
KEYWORD
nonn,tabl,easy
AUTHOR
Felix Fröhlich, Sep 24 2016
STATUS
approved