login
Square array A(row,col): A(row,1) = A276937(row), and for col > 1, A(row,col) = A003961(A(row,col-1)), read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
4

%I #10 Sep 26 2016 20:41:22

%S 2,3,6,5,15,9,7,35,25,10,11,77,49,21,14,13,143,121,55,33,18,17,221,

%T 169,91,65,75,22,19,323,289,187,119,245,39,26,23,437,361,247,209,847,

%U 85,51,30,29,667,529,391,299,1859,133,95,105,34,31,899,841,551,493,3757,253,161,385,57,38,37,1147,961,713,589,6137,377,319,1001,115,69,42

%N Square array A(row,col): A(row,1) = A276937(row), and for col > 1, A(row,col) = A003961(A(row,col-1)), read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

%C The starting offset is 2 because 1 is not included in the array proper. With it the terms are a permutation of A276078.

%C All terms on each row have the same prime signature.

%H Antti Karttunen, <a href="/A276942/b276942.txt">Table of n, a(n) for n = 2..631; the first 35 antidiagonals of array</a>

%F A(row,1) = A276937(row); for col > 1, A(row,col) = A003961(A(row,col-1)).

%e The top left corner of the array:

%e 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43

%e 6, 15, 35, 77, 143, 221, 323, 437, 667, 899, 1147, 1517, 1763, 2021

%e 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209

%e 10, 21, 55, 91, 187, 247, 391, 551, 713, 1073, 1271, 1591, 1927, 2279

%e 14, 33, 65, 119, 209, 299, 493, 589, 851, 1189, 1333, 1739, 2173, 2537

%o (Scheme)

%o (define (A276942 n) (A276941bi (A004736 (- n 1)) (A002260 (- n 1)))) ;; Code for A276941bi given in A276941.

%Y Transpose: A276941.

%Y Leftmost column: A276937, second column: A276938.

%Y Rows from the top: A000040, A006094, A001248 (from 9 onward), A090076, A090090.

%Y Cf. A003961.

%Y Cf. A276078 (sorted into ascending order).

%Y Cf. also A276075, A276955.

%K nonn,tabl

%O 2,1

%A _Antti Karttunen_, Sep 25 2016